
File I/O Summary
by Michael Gerhardt, Krystina Kamjorn, Matthew Mercer

- Simplest way to read in text: Scanner class
- Scanner uses the File class to read input from disk files

o File fileName = new File(“silly.txt”);
Scanner input = new Scanner(fileName);

- Use the Scanner methods to read data from input file
o next(), nextLine(), nextInt(), nextDouble()

- Use PrintWriter to write to write output to a file
o PrintWriter output = new PrintWriter(“foo.txt”);

- Data from an existing output file will be emptied before new data is written into it,
otherwise a new file is created

- print(), println(), and printf() can be used with any PrintWriter object
- You must close PrintWriter after you’re done writing to a file, otherwise all of the output

might not be in the file
o output.close();

- FileNotFoundException will occur if the input or output file doesn’t exist, so throw a
FileNotFountException in the main method

- Can also use a JFileChooser to open or save a file
o JFileChooser picky = new JFileChooser();

Scanner input = null;
if (picky.showOpenDialog(null) == JFileChooser.APPROVE_OPTION){
 File fileName = picky.getSelectedFile():
 input = new Scanner(fileName);
}

- A word in Java is any non-white space character (e.g., computers. , 1234, A+)
- White space is removed from the input when using hasNext();
- To read only letters, call the useDelimiter() method on the Scanner object
- next() will take an entire line with the white space and display the line without the space
- When using a string literal for a file name, you must use two backslashes

o File inFile = new File(“\\src\\input.txt”);
o Using one backslash is valid for user inputs

- nextLine() will remove white space from after the last character in a line, whereas nextInt()
and nextDouble() will not

